AMD Mobile Serial VID Dual-Phase
Fixed-Frequency Controller
I LOAD ( PHASE ) = LOAD
Table 6. OPTION Pin Settings
TRANSIENT-PHASE
OPTION OFFSET ENABLED
REPEAT ENABLED
I
η PH
where η PH is the total number of active phases.
V CC
OPEN
REF
GND
0
0
1
1
0
1
0
1
?
Switching frequency: This choice determines the
basic trade-off between size and efficiency. The
optimal frequency is largely a function of maximum
input voltage, due to MOSFET switching losses that
are proportional to frequency and V IN 2 . The opti-
Offset and Transient-Phase
Repeat (OPTION)
The +12.5mV offset and the transient-phase repeat fea-
tures of the MAX17009 can be selectively enabled and
disabled by the OPTION pin setting. Table 6 shows the
OPTION pin voltage levels and the features that are
enabled. See the Transient Phase Repeat section for a
detailed description of the respective features. When
the offset is enabled, setting the PSI_L bit low disables
the offset reducing power consumption in the low-
power state.
SMPS Design Procedure
Firmly establish the input voltage range and maximum
load current before choosing a switching frequency
and inductor operating point (ripple-current ratio). The
primary design trade-off lies in choosing a good switch-
ing frequency and inductor operating point, and the fol-
mum frequency is also a moving target, due to
rapid improvements in MOSFET technology that are
making higher frequencies more practical.
When selecting a switching frequency, the mini-
mum on-time at the highest input voltage and low-
est output voltage must be greater than the 185ns
(max) minimum on-time specification in the
Electrical Characteristics table:
V OUT(MIN) / V IN(MAX) x T SW > t ONMIN
A good rule is to choose a minimum on-time of at
least 200ns.
When in pulse-skipping operation SKIP_ = GND,
the minimum on-time must take into consideration
the time needed for proper skip-mode operation.
The on-time for a skip pulse must be greater than
the 185ns (max) minimum on-time specification in
the Electrical Characteristics table:
lowing four factors dictate the rest of the design:
? Input voltage range: The maximum value (V IN(MAX) )
must accommodate the worst-case high AC
t ONMIN ≤
R SENSE ( V IN ( MAX ) ? V OUT ( MIN )
LV IDLE
)
adapter voltage. The minimum value (V IN(MIN) )
must account for the lowest input voltage after
drops due to connectors, fuses, and battery selec-
tor switches. If there is a choice at all, lower input
voltages result in better efficiency.
?
Inductor operating point: This choice provides
trade-offs between size vs. efficiency and transient
response vs. output noise. Low inductor values pro-
vide better transient response and smaller physical
size, but also result in lower efficiency and higher
?
Maximum load current: There are two values to
consider. The peak load current (I LOAD(MAX) ) deter-
mines the instantaneous component stresses and fil-
tering requirements, and thus drives output capacitor
selection, inductor saturation rating, and the design
of the current-limit circuit. The continuous load cur-
rent (I LOAD ) determines the thermal stresses and
thus drives the selection of input capacitors,
MOSFETs, and other critical heat-contributing com-
ponents. Modern notebook CPUs generally exhibit
I LOAD = I LOAD(MAX) x 80%.
For multiphase systems, each phase supports a
fraction of the load, depending on the current bal-
ancing. When properly balanced, the load current
is evenly distributed among each phase:
output noise due to increased ripple current. The
minimum practical inductor value is one that causes
the circuit to operate at the edge of critical conduc-
tion (where the inductor current just touches zero
with every cycle at maximum load). Inductor values
lower than this grant no further size-reduction bene-
fit. The optimum operating point is usually found
between 20% and 50% ripple current.
Inductor Selection
By design, the AMD Mobile Serial VID application
should regard each of the MAX17009 SMPSs as inde-
pendent, single-phase regulators. The switching fre-
quency and operating point (% ripple current or LIR)
determine the inductor value as follows:
______________________________________________________________________________________
35
相关PDF资料
MAX17410GTM+ IC CTLR QPWM 2PH FOR IMV 48TQFN
MC2711H SWITCH BUSHING PLUNGER W/SEAL
MC2711 SWITCH BUSHING MOUNT PLUNGER
MC7711 SWITCH BUSHING MOUNT PLUNGER
MCA7711 SWITCH BUSHING MOUNT PLUNGER
MCD2711 SWITCH BUSHING MOUNT PLUNGER
MCD7711 SWITCH BUSHING MOUNT PLUNGER
MCZ2010AH900 CHOKE COMMON MODE 90 OHM SMD
相关代理商/技术参数
MAX17009GTL+T 功能描述:其他电源管理 AMD Dual-Phase CPU Controller RoHS:否 制造商:Texas Instruments 输出电压范围: 输出电流:4 mA 输入电压范围:3 V to 3.6 V 输入电流: 功率耗散: 工作温度范围:- 40 C to + 110 C 安装风格:SMD/SMT 封装 / 箱体:VQFN-48 封装:Reel
MAX1700EEE 功能描述:直流/直流开关转换器 1-3 Cell 1A Step-Up DC/DC Converters RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT
MAX1700EEE+ 功能描述:直流/直流开关转换器 1-3 Cell 1A Step-Up DC/DC Converters RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT
MAX1700EEE+T 功能描述:直流/直流开关转换器 1-3 Cell 1A Step-Up DC/DC Converters RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT
MAX1700EEE-T 功能描述:直流/直流开关转换器 1-3 Cell 1A Step-Up DC/DC Converters RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT
MAX17010AETL+ 功能描述:LCD 驱动器 Internal-Switch Boost Regulator RoHS:否 制造商:Maxim Integrated 数位数量:4.5 片段数量:30 最大时钟频率:19 KHz 工作电源电压:3 V to 3.6 V 最大工作温度:+ 85 C 最小工作温度:- 20 C 封装 / 箱体:PDIP-40 封装:Tube
MAX17010AETL+T 功能描述:LCD 驱动器 Internal-Switch Boost Regulator RoHS:否 制造商:Maxim Integrated 数位数量:4.5 片段数量:30 最大时钟频率:19 KHz 工作电源电压:3 V to 3.6 V 最大工作温度:+ 85 C 最小工作温度:- 20 C 封装 / 箱体:PDIP-40 封装:Tube
MAX17010ETL+ 功能描述:LCD 驱动器 Internal-Switch Boost Regulator RoHS:否 制造商:Maxim Integrated 数位数量:4.5 片段数量:30 最大时钟频率:19 KHz 工作电源电压:3 V to 3.6 V 最大工作温度:+ 85 C 最小工作温度:- 20 C 封装 / 箱体:PDIP-40 封装:Tube